
Frozen states of a disordered globular heteropolymer

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 1647

(http://iopscience.iop.org/0305-4470/22/10/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 22 (1989) 1647-1659. Printed in the UK 
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USSR 
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Abstract. The disordered heteropolymer chain with a random sequence of links-a simple 
model of globular protein-is investigated using the replica approach in the mean-field 
approximation. It is shown that for low dimensions of space ( d  < 2) polymer bonds play 
the main role of creating frustrations. The mean-field equations are derived; the solution 
of these equations is obtained by the variational principle. This solution demonstrates the 
replica-symmetry breaking with unusual behaviour of the Parisi order parameter q ( x )  - x"' 
for x < xo and m > 1. It follows that the set of equilibrium states is ultrametric with an 
anomalously large number of weakly overlapping states. 

1. Introduction 

The main biological macromolecules-proteins and DNA-are non-uniform linear 
chains. Proteins in living cells possess a unique three-dimensional structure which is 
determined by their primary structure: the sequence of their monomers. Revealing 
this 'physical code', i.e. understanding how the primary structure encodes for the fold 
of a protein chain is one of the most intriguing unsolved problems of molecular biology 
(Anfinsen 1973, Creighton 1985). It is widely accepted (see, e.g., Paine and Scheraga 
1985, Rammal er al 1986 and references therein) that the protein folding problem is 
analogous to the optimisation problem for the search of the lowest kinetically available 
minimum of energy. 

Hence, it seems interesting to investigate the conformational space of a protein 
chain, i.e. to determine the number of energy minima and the possible barriers between 
them. 

From a general point of view, the protein can be treated as a frustrated disordered 
system. Frustrations appear for two reasons: first, interactions between links which 
are adjacent in space depend on their types. This causes the appearance of frustrated 
loops in many-particle clusters. The second reason is the influence of polymeric bonds 
on the probability of contact between groups, i.e. competition between short- and 
long-ranged interactions (to avoid misunderstanding, we note here that the interactions 
between groups which are adjacent along the chain are called short-ranged interactions). 

Significant progress has been achieved in studying disordered frustrated systems 
such as spin glasses (see the review of Binder and Young (1986)). It seems reasonable 
to apply the ideas accepted in spin-glass theory to the investigation of non-uniform 
polymeric chains. This was done by Bryngelson and Wolynes (1987). However, the 
discussion in that work was based on a phenomenological model analogous to the 
random energy model ( R E M )  (Demda 1980). Our aim is to investigate a microscopic 
model of a linear heteropolymer using the replica approach. Most attention must be 
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paid to the collapsed (globular) state of a heteropolymer chain. (The replica approach 
was applied by Fernandez and Rabitz (1987) for investigation of the heteropolymeric 
coil and by Obukhov (1986) for studying the coil-globule transition.) 

Simple estimations which are given below show that the results depend drastically 
on the space dimensionality d. This is due to the fact that for d < 2 the groups adjacent 
along the chain become adjacent in space also. This is not the case for d > 2.  Thus 
the strongest influence of polymeric bonds is for the case when d < 2. Here we shall 
pay most attention to this case. 

2. The model and basic relations 

We shall use the conformational space approach to describe the heteropolymer chain 
(Edwards 1966, Kholodenko and Freed 1983). The partition function of such a chain 
can be written in the continual form 

Z = 1 exp(-H{x(T)}) dx(7) 
x(O)=O 

where integration in (1) is taken over all configurations of the chain x( 7); the conven- 
tional Hamiltonian H{x(T)} (see e.g. Kholodenko and Freed 1983) 

* = $ a - ’  JON (dx(7)/dT)’d7+; B(7, 7 ’ ) S ( x ( ~ ) - x ( ~ ’ ) )  dTd7’ JON 
+ ic  IoN 8 ( X( T )  - X( 7’)) 8 (X( T )  - X( 7”)) d7 d 7’ d 7” (2) 

is used, where N is the contour length of a chain, a is the effective size of a link, 
B(T,  7’) is the two-body interaction constant between the links positioned in T and T’ 

along the chain and C is the three-body interaction constant which is assumed to be 
independent of the type of the links. The S function reflects, as usual, the short-ranged 
nature of the interaction potential; it must be smoothed properly inside the microscopic 
scales less than u1ld where U is the excluded volume of a link. 

The simplest but non-trivial way to introduce the disorder is to assume B(7,  T ’ )  to 
be independent random variables with Gaussian distribution: 

P ( B ( T ,  7’)) = (~TB’)-’/’ exp[-(B(T, 7’)- B , ) ’ / ~ B ’ ]  (3) 
where, as usual, Bo is the mean and B is the standard variance. 

Now we proceed to the evaluation of the free energy using the replica trick: 

(Z”),,- 1 (In Z)av = lim 
n-to n 

Here ( ),, denotes averaging over disorder with the weight (3). 
The averaging in the RHS of (4) is straightforward for integer n ;  it gives 

( z ” ) a v =  1 e x p ( - ~ e ~ x a ( 7 ) 1 )  II ~xcr(T)-  

(4) 

Here a is the replica index and H,,{x, (7)) is the effective Hamiltonian which depends 
on the configurations {x, ( T ) }  of all n replicas. It can be presented in the following form: 

He,  = H,+ H I  + H’ 
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where 

JoNz(dx . ( r ) /dr ) 'd r  U 

is the elastic energy of n replicas, 

H I =  $6 loN 8 ( X u  ( 7 )  - xu (7')) d7 d.r' 
U 

+ dc JON c s(x, (7 )  - xu (7'))s (X, (7) - X, (7")) d7 d7' d7" 
U 
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(6) 

(7) 

is the one-replica part of the effective Hamiltonian, and 6 = Bo - $ B * u - ~ .  

H 2 =  - ; B 2  JON 1 S ( X , ( T ) - X , ( T ' ) ) S ( X ~ ( T ) - X ~ ( T ' ) )  d 7 d r '  (8)  
a+@ 

is the two-replica part of the effective Hamiltonian; it describes the interaction between 
replicas; all the non-trivial effects occur due to this term. 

We define now the macroscopic (order) parameter: 

The order parameter Qup is the correlator for chain passways of replicas a and p. It 
is more complicated than the overlap between replicas used in spin-glass theory 
(Sherrington and Kirkpatrick 1975) since it is the matrix of functions of two space 
coordinates. It is convenient to define the overlap between replicas CY and p :  

P N  r 

qua = u ~ N - '  J ~ ( x , ( T ) - x ~ ( T ) )  d 7 =  udN-' Qup(r, r) dr. 
0 J (10) 

Equation (5) can now be rewritten in terms of Qup : 

is the entropy corresponding to the number of chain passways of all replicas which 
lead to the given set { QuP}.  
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The order parameter Qup( rl , r2) is subjected to the conditions which follow from 
its definition (9): 

5 Qup(rl 9 rz) dr1 dr2 = N 

1 Qap(rl, r2) dr1 =pp(r2)* 

The Hamiltonian is symmetric relative to the permutation of the replica indices; 
thus the one-replica values such as density pu(r) ,  do not depend on the replica index 
a. It seems natural to assume that the one-replica density p,(r) will be the same as 
for a corresponding homopolymer with a two-particle interaction constant 8 and a 
three-particle interaction constant C. It has been already mentioned that we shall treat 
the case when the chain is a globule, i.e. < 0. The density of a large homopolymeric 
globule (with volume V =  N / p  >> a )  was found by Lifshitz et a1 (1978): pu = - 3 i / 2 C .  
The surface layer thickness is a << V1ld for N >> 1. This now makes it possible to neglect 
the surface effect, i.e. to use the volume approximation. This approximation means 
that the average density for any replica pa(r)  is constant inside the globule and zero 
outside it. In such a globule the order parameter Qap(  rI , r2) will depend only upon 
the difference between the arguments: Qup( r, , r2) = Qup(rl - r2) and the normalisation 
condition will have the form 

1 Qup(r) d r =  P (13) 

( Qap( r) = 0 outside the globule). 

theory through a single parameter-the density of a chain. 
We see that the averaged interaction constants Bo and C are introduced into their 

3. The mean-field approximation 

We shall deal with (1 1) using the mean-field approximation, i.e. find the minimum of 
the integrand in (1 1) (in our case, it really demands maximisation instead of minimisa- 
tion since when n < 1 both terms in the integrand of (11) change their sign). 

The main problem now is the maximisation of the two-replica part of the free energy 

F{Qap}= - t B 2 V  1 Qlp(r) dr-s{Qup(r)} I u + p  

together with the normalisation condition (13). 
It is necessary to evaluate the configurational entropy S { Q a p } .  The direct way to 

do this is to use the Lifshitz approach to the theory of globules (Lifshitz et a1 1979). 
This is done in appendix 1 where it is shown that 

(14) max {FiQup}} = “2” {F{@}} .  
04 

Here @( r, , . . . . , r,) = @({ r}) is the function of all replica coordinates 

F { O } = ( f a ’ I ?  ( z ) 2 d { r } - @ 2  1 O2({r})O2({r’})6(rn-r;) I u + p  
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Maximisation on the RHS of (14) must be done with the normalisation condition I Q 2 ( { r } )  d{r} = N. 

Qap and @ which maximise (14) are connected via the relation 

Q u p ( r l ,  r 2 )  = @2({r'})8(rl - r L P ( r 2 -  (3, d{r}. I 
Variation of (15) gives 

(a2A+p)@=-2B2@({r}) @ 2 ( { r ' } ) 8 ( r u - r L ) 8 ( r p - r b )  d{r'}. 

(16) 

Here A is a dn-dimensional Laplacian and p is a Lagrangian multiplier which corre- 
sponds to the normalisation condition (16). We underline an important feature of 
function @ which follows from translational invariance inside the large globule: 

@( rl + R, . . . , r,  + R )  = @( r l ,  . . . , r , )  (19) 

for R<c V'Id 

4. Qualitative investigation 

The exact maximisation of (15) for arbitrary n (especially for n + 0) is a cumbersome 
problem. However, here we shall give simple arguments which make it possible to 
analyse the situation qualitatively. These arguments are analogous to the virial theorem 
in field theory (Rajaraman 1982). 

We introduce a one-parameter set of @ functions: 

Q R ( { T ) )  = R d ( l - " ) / 2  @1({r/RI). (20) 

The scale R should itself be chosen from the maximisation condition. is the function 
with the unit scale. It can be seen easily that F { @ R )  can be represented in a simple form: 

F(0 .R)  A , /  R 2  - A2/ R d  (21) 

where 

(23) 

The values Al  and A2 do not depend on R and are both negative for n < 1. The 

(1) to find the scale R, i.e. to maximise (21) for n < 1 with respect to R ;  
(2) to find the form of @ ] ,  i.e. to maximise (21) with respect to Q1. 
The first can be done simply when d < 2 .  In this case we obtain R =  R * =  

(2Al/dA2)1/'2-d), so that R - B - 2 / ' 2 - d '  . Thus the non-trivial solutions appear for any 
B # 0 in this case. The reverse scale 11 R* is a continuous function of B (1/ R* = 0 for 
B = 0). We shall give a detailed investigation of the case d < 2 (the results for the case 
d > 2 will be published elsewhere). 

A 2 -  -1 2B 2 I @ ; ( { r } ) @ ? ( { r ' } ) 8 ( r u  - r & ) 8 ( r p  - rb) d{rId{r'l. 
- + P  

problem of maximisation is split now into two problems: 
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Introducing the dimensionless variables 

@ (24) r'= (p ' l ' /a)r  and = ( p / a 2 ) ( 2 - ~ 1 ) d / 4  

it is possible to exclude all parameters in (18). Taking the limit n + 0 and applying 
the Parisi ansatz (Parisi 1980) to QOa( r )  we shall obtain the function of two continuous 
arguments for the order parameter Q(x, I )  where 0 < x < 1. This function obeys the 
following scaling relation: 

Q(x; r ,  = slgd (x; r/sZ) 

where s1 = p s t ,  s2 = ( p B 2 / a 2 ) ' / ( 2 - d )  and gd is the universal scaling function. This means 
that the functional form of the order parameter, as well as the function a,, is not 
changed when the parameters of the model B, Bo and C are changed when the 
temperature or solvent quality is changed. 

cannot be found by any perturbative method since it contains no small parameter 
after the rescaling. However, one can see that there is no solution for the minimisation 
equations (21)-(23) that gives symmetric @ ] ( r 1 , .  . . , r, ,) .  Let us consider, indeed, the 
large globule with V >> a3 .  It was mentioned above that in this case the function 
@ , ( r l ,  . . . , r , )  is translationally invariant (see (19)). Therefore it can be represented 
in the form Ql(r1  - r,,, r2 - r,,, . . .). It can be seen that the entropic term A ,  and energetic 
term A, in (21) are of different orders on n (the latter is usually - n ( n  - l),  while the 
former one is also negative but -1). This fact signals that the existing solution for 
is necessarily non-symmetric which causes the symmetry breaking in the order para- 
meter Q a a ( r )  as well. 

5. Gaussian approximation 

An exact maximisation of ( 15) as well as a perturbative approach to it is impossible. 
It seems reasonable to use a variational approach with the simple Gaussian trial 
functions: 

where kap is the matrix of the Parisi type. 

elements kap : 
The translational invariance of the function @ leads to the condition for the matrix 

1 kap = 0. (26) 
a 

This condition together with the normalisation condition (16) gives 

(27) 

Here D is the minor of an arbitrary diagonal element of the matrix kaa ; it does not 
depend on the choice of the element. Calculating the integrals in (15)  with the use of 
(25)-(27) we obtain the final expression: 

= , ( l - d ) / 2 p ~ d / 2 .  
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Here DaS is the determinant of the matrix obtained from k,, by subtracting columns 
and rows which intersect in the diagonal elements k,, and k,,, divided by D. We 
shall now use the Parisi ansatz and make the limit n + 0. As a result we obtain 

where k(x) and D(x)  are the functions which are obtained as n + 0 limit of k,, and 
DoS. The function D ( x )  is calculated in appendix 2 where it is shown that 

where 

K ( x ) =  k(y) dy-xk(x).  r,. 
It is convenient now to express the functional (29) through the function K(x):  

F{@} = t l v n  da2  ( - lo1 K (x)  dx /x2+ b2 Io' D-d/2(x) dx) (32) 

where b2 = 2pB2/(da2(27r)d/2). Variation of (32) with respect to K(x )  gives 

Differentiation of (33) with respect to x gives 

D(x) = [d (d  +2)bz/2]2i'd+4)K6i'd+4) (x)  or K'(x)=O. (34) 
Differentiating (34) with respect to x we obtain finally 

K ( x )  = KOxm or K(x )  = constant 

where 

m = ( 4 + d ) / ( 2 - d )  KO = [ d ( d  + 2) b'/2]'"2-d'[3/ (4 + d)]". 

The two solutions for K(x )  must coincide for x = xo; (30) and (31) must be taken 
into account: 

where xo = (4+  d)/6.  
The order parameter can be determined with the help of (17): 

O(x, r )  = ( P ~ - ~ ' ~ / R ~ ( x ) )  exp[ - ( r /~(x) ) ' ]  
where 

( Ko/2~o) ' '2~3i '2 -d '  o < x < x o  
{(K0/2)112x,"12 x , < x < l .  

R- '(x) = 

Finally, we obtain for the overlaps (10) 

q(x)  = ( ~ - ' " R - ' ( X ) ) ~ .  

The plot of the function q ( x )  is shown in figure 1 
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X 

Figure 1. Plot of the order parameter q ( x ) .  

6. Discussion 

The replica-symmetry breaking (RSB) means, as usual, the lack of ergodicity, i.e. the 
presence of a variety of equilibrium states (Parisi 1983). However, in the discussed 
system of a heteropolymer at a low space dimension d < 2 this RSB is quite unusual. 
The presence of a finite scale R* = R ( l )  of the order parameter Q(x, r )  means that 
the chain fold is frozen but not absolutely-only up to the scale R*, i.e. the characteristic 
fluctuation of any link is of order R*. 

The number of equilibrium states (MCzard et al 1984), i.e. the shape of functions 
Q(x, r )  and q ( x )  does not depend on the heterogeneity of the chain B, and only the 
equilibrium scale of fluctuations R*, as well as the amplitude of the order parameter, 
depends on it. This means that the increase in heterogeneity leads to an increase in 
the degree of freezing in equilibrium states but without changing the nature of these 
states. 

Another interesting and unusual feature of the RSB in this model is the power 
dependence q - x ~ ~ ’ ( ~ - ~ )  for x < xo. Accepting the standard interpretation for the RSB 

(Parisi 1983) and introducing the function P( q )  = dx/dq-the probability distribution 
for two states to have the overlap q-we obtain 

The plot of function P ( q )  is shown in figure 2. The rapid growth of P ( q )  for 4 - 0  
shows an anomalously large number of weakly overlapping states. 

It has already been mentioned that the short-range interactions are predominant 
for low-dimensional polymers. Thus, the polymeric bonds create anomalously strong 
frustrations which cause an anomalous growth of the number of states in heteropolymers 
at low ( d  < 2 )  dimensions. 

The power dependence of the order parameter q ( x )  make it reasonable to suggest 
peculiar scaling properties of the set of equilibrium states. It seems possible to use 
the RG transformation of a simultaneous change of the scale of the order parameter 
and the scale of the replica variables x which means dividing replicas with similar (on 
the current scale) chain fold into clusters. Such an RG approach may reveal interesting 
fractal properties of the set of states. 

for 4 < d l ) .  P ( ~ )  - q ( 2 - 4 d ’ / ( 3 d )  
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Figure 2. Plot of the probability distribution P ( 9 ) .  

The question arises: what have the results for low dimensions to do with real 
proteins? It was stressed recently (Grosberg et a1 1988a, b) that the topological con- 
straints in a non-phantom polymer chain strongly influence the chain collapse process. 
This leads to the formation of a long-lived intermediate globular state-the fractal 
crumpled globule for which the short-ranged interactions are predominant even for 
d = 3. It may be possible that the suggested results may describe (at least, qualitatively) 
the structure of a crumpled globule. 
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Appendix 1. Evaluation of configurational entropy 

We shall generalise the idea of the mean-field approach to the calculation of the 
configurational entropy proposed by Lifshitz et a1 (1978) for the case of homopolymeric 
globules. Consider the system of n replicas in an ‘external field’ U a P ( r , ,  r2 ) .  The 
partition function of such a system is 
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The last integral can be expressed through integration with the order parameter 
Q u p ( r l ,  4: 

The entropy S{Qap)  in ( A l . l )  is the same as in (12). Since we are dealing with a 
globular state, it is reasonable to calculate the last integral by the saddle-point method. 
The saddle-point value of Qap is determined by the equation 

Uup(r1, r2) = ~S{Qap)/~Qop('1, r2) 

and the entropy 
r 

(Al .2)  

Thus the problem now is to calculate the free energy F{ Uap}  of the n-replica system 
in the 'external field' Uap(r l ,  rz ) .  In order to do this we introduce the Green function 
which is the partition function of replicas with fixed ends: 

-JON a;p Uap(ra(7), r p ( ? . )  d7. ) 
This Green function obeys the 'equation of motion': 

(A1.3) 

for Uap << 1 .  The solution of (A1.3) has the following form in the ground-state domin- 
ance approximation: 

G(0, 1x1; N, {Y)) = exP(-PN)CP({x})CP.({Y}). 
Here lr and CP are the main eigenvalue and eigenfunction of the equation 

The free energy has the simple form 

F{ K " p l =  NP 
and overlaps 

Substituting (A1.4)-(A1.6) into (A1.2) we obtain 

(A1.4) 

(A1.5) 

(A1.6) 

(A1.7) 

Equations (15) and (17) follow from (A1.6) and (A1.7). 
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Appendix 2. Evaluation of the function D(x)  

Consider matrix M obtained from k,, by crossing out the row and the column of kup 
which intersect in the a t h  diagonal element of kap. It can be seen that the Pth diagonal 
element of the reverse matrix M-’ is Dap.  Thus it is necessary to evaluate the matrix 
M-’ in the limit n + 0. 

In the framework of the Parizi ansatz, the matrix M is characterised by the sequences 
m, and k,-the size of blocks and values of the matrix elements inside the blocks 
(figure 3 ( a ) ) .  This matrix is expressed through the function of a continuous argument 
k ( x ) ,  0 < x < 1, in the limit n + 0. The reverse matrix M-’ has a lower symmetry and 
it is necessary to determine, besides, m, the values D,, E ,  and F,,; the meaning of 
these values is clear from figure 3( b). 

The relation M-’M = 1 leads to the system of linear equations for D,, E,, and FIJ. 
Taking the limit n + 0 we obtain the following integral equations: 

I,’ k(z)F(y, z) d z +  1; k ( z ) F ( z ,  Y )  d z +  k ( x )  F(z ,  Y )  d z +  k O (  y E ( y ,  y )  

+ Iy’ E(z, y )  dz - D ( y )  - K ( x ) F ( x ,  y )  = 0 ) 

+ k ( x )  E(z, y )  dz - K ( x ) E ( x ,  y )  = 0 

I,’ k(z)F(y, z) dz+  M y )  ly’ F(z, y )  dz-  D ( Y )  lo’ k(z) dz+yk(y)E(y, y )  

+ ly1 k(z)E(z,  y)  dz = -1. 

Here D ( y ) ,  E ( x ,  y )  and F ( x ,  y )  are the functions of continuous arguments O <  y < 1, 
y < x <  1; K ( x )  is determined by equation (31) in the text. 

The solution of this system is obtained by differentiation of the equations. As a 
result we obtain 

1 
F ( x , y ) = - -  - 

x K ( x )  z 2 g z )  
(A2.1) 

(A2.2) 
(A2.3) 

Equation (30) of the text is obtained from (A2.1) and (A2.3). 

Note added. This paper had been already submitted when we read an interesting work (Garel and Orland 
1988) in which similar ideas have been put forth. Although close in general approach, our work differs 
from that of Garel and Orland ( G O )  in the character of the results obtained. For example, it has been 
argued in GO that the discontinuous Potts-glass-like behaviour of the order parameter Q is obtained for 
high dimensions, d >>4. This is in contrast with our result in $ 4  of this paper where we claim that the 
discontinuous behaviour is observed when d > 2 (see also Shakhnovich and Gutin 1989). For low dimensions 
the use of the multiplicative replica-symmetric trial function cp in GO made it possible to consider the 
coil-disordered globule transition, while the main aim of the present work was the investigation of the 
non-ergodic frozen globular state with broken replica symmetry. This caused the choice of the trial 9 
function \ i ( { R } )  =Yo exp( -+E,., k,,R,R,) in which replica-symmetry breaking is assumed. 
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k 

Figure 3. ( a )  Matrix k ( b )  Matrix M-‘. (Details in appendix 2.) 
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